Let f(x)=limn→∞1(3πtan−12x)2n+5. Then the complete set of values of x for which f(x)=0 is
A
|2x|>√3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
|2x|<√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
|2x|≥√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
|2x|≤√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A|2x|>√3 f(x)=limn→∞1(3πtan−12x)2n+5=0 ⇒[(3πtan−12x)2]n→∞ as n→∞ ⇒(3πtan−12x)2>1⇒∣∣∣3πtan−12x∣∣∣>1⇒|tan−12x|>π3 ⇒tan−12x<−π3 or tan−12x>π3 ⇒2x<−√3 or 2x>√3 ⇒|2x|>√3