Let f(x)=20∑r=0arxr and g(x)=9∑r=0brxr+20∑r=10xr. If f(x)=g(x+1), then the value of a10 is
A
21C11
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
19C9
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
19C11
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
21C9
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A21C11 Given f(x)=20∑r=0arxr and g(x)=9∑r=0brxr+20∑r=10xr
According to given condition, f(x)=g(x+1)⇒20∑r=0arxr=9∑r=0br(x+1)r+20∑r=10(x+1)r⇒20∑r=0arxr=9∑r=0br(x+1)r+(x+1)10{(x+1)11−1x+1−1} ⇒20∑r=0arxr=9∑r=0br(x+1)r+(x+1)21−(x+1)10x
Comparing the coefficients of x10, we get a10= coefficient of x11 in [(x+1)21−(x+1)10] ⇒a10= coefficient of x11 in (x+1)21 ∴a10=21C11