Let F(x)=f(x)+f(1x), where f(x)=x∫1logt1+tdt.
Then the value of F(e) is:
A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D12 F(x)=x∫1logt1+tdt+1/x∫1logt1+tdt
In the 2nd integral let t=1/y ⇒dt=−1y2dy ⇒F(x)=x∫1logt1+tdt+x∫1−logy1+1y(−dyy2) =x∫1logt1+tdt+x∫1logyy(1+y)dy =x∫1logt1+tdt+x∫1logtt(1+t)dt =x∫1logttdt=12(logx)2 ∴F(e)=12