Let F(x)=f(x)+f(1x), where f(x)=∫xllogtl+tdt. Then F(e) equals
A
12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A12 ∵f(x)=∫x1xlogt1+tdt and F(e)=f(e)+f(1e) ⇒F(e)=∫e1logt1+tdt+∫1/e1xlogt1+tdt =∫e1logt1+tdt+∫e1logtt(1+t)dt=∫e1logttdt =[(logt)22]e1=12[(loge)2−(log1)2]=12