Let f(x)=tanxx,thenlogelimx→0([f(x)]+x2)1{f(x)} is equal to, (where [.] denotes greatest integer function and { } fractional part)
3
limx→0[f(x)]=limx→0[tanxx]=1
limx→0([f(x)]+x2)1(f(x))=limx→0(1+x2)1(f(x))(1∞form)
Again, f(x)=tanxx=x+x33+215+......x
{f(x)}=x23+215x4+.......
(i)becomes,
loge(elimx→0x2×1{f(x)})=elimx→0x2x23+215x4+...∞=3