Let F(x)=x(1+xn)1/n for n≥2 and g(x)=(f∘f∘..∘f)f occours n times(x). Then ∫xx−2g(x)dx equals.
1n(n−1)(1+nxn)1−1n+K
Given f(x)=x(1+xn)1/n for n≥2
∴f∘f(x)=f[f(x)]=f[x(1+xn)1/n]=x(1+xn)1/n[1+xn1+xn]1/n=x(1+2xn)1/n
Further f∘f∘f(x)=x(1+3xn)1/n
Proceeding in the similar manner. we get
g(x)=f∘f∘f....∘f(x)=x(1+nxn)1/n
(f occurs n times)
Now, ∫xn−2g(x)dx=∫xn−1(1+nxn)1/ndx
Let 1+nxn=t⇒n2xn−1dx=dt
∴ Integral becomes =1n2∫t−1/ndt=1n2.t−1n+1−1n+1
=1n,t1−1/nn−1+K=(1+nxn)1−1/nn(n−1)+K