Let f=[(x,x21+x2):x ϵ R] be a function from R into R. Determine the range of f.
Here f(x)=x21+x2.
Put y=x21+x2
⇒y+yx2=x2⇒x2(1−y)=y
⇒x2=y1−y
⇒x=±√y1−y
Now x will be real if:
y1−y≥0
⇒yy−1≤0
⇒0≤y<1
⇒y ϵ [0,1)
∴ Range of f(x) = [0, 1)