f(e2)−f(1e2)
=∫e21tan−1ttdt−∫1e21tan−1ttdt For second integral substitute t=1z⇒dt=−1z2dz∴∫e21tan−1ttdt−∫1e21tan−1ttdt=∫e21tan−1ttdt+∫e21tan−1(1z)(1z)(−1z2)dz=∫e21tan−1ttdt+∫e21tan−1(1z)zdz For second integral z is a dummy variable, replacing it by t integral will become ∫e21tan−1ttdt+∫e21tan−1(1t)tdt We know that, tan−1(1t)=cot−(t) After adding integrals we get, =∫e21π2tdt=π2.(2)=π