The correct option is B π
f(e2)−f(1e2)
=∫e21tan−1ttdt−∫1e21tan−1ttdt For second integral substitute t=1z⇒dt=−1z2dz∫e21tan−1ttdt+∫e21tan−1(1z)zdz For second integral put z=t integral will become ∫e21tan−1ttdt+∫e21tan−1(1t)tdt We know that, tan−1(1t)=cot−(t) After adding integrals we get, =∫e21π2tdt=π2.(2)=π