wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f(x) is a derivable function satisfying f(x)=x0etsin(xt)dt and g(x)=f′′(x)f(x), then the number of possible integers in the range of g(x) is

Open in App
Solution

f(x)=x0etsin(xt)dt
Applying integration by parts succesively : taking u=sin(xt),v=et
f(x)=[sin(xt)et]x0+x0etcos(xt)dt=sinx+[cos(xt)et]x0x0etsin(xt)dt=sinx+excosxf(x)f(x)=12(cosxsinx+ex)f(x)=12[sinxcosx+ex]f′′(x)=12[cosx+sinx+ex]g(x)=f′′(x)f(x)=12[cosx+sinx+ex+cosx+sinxex]=12[2(cosx+sinx)]g(x)=cosx+sinx
Range of g(x) is [2,2]
Thus, 3 integral points in range of g(x)

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon