f(x)=x∫0etsin(x−t)dt
Applying integration by parts succesively : taking u=sin(x−t),v=et
⇒f(x)=[sin(x−t)et]x0+x∫0etcos(x−t)dt=−sinx+⎡⎢⎣[cos(x−t)et]x0−x∫0etsin(x−t)dt⎤⎥⎦=−sinx+ex−cosx−f(x)⇒f(x)=12(−cosx−sinx+ex)f′(x)=12[sinx−cosx+ex]f′′(x)=12[cosx+sinx+ex]g(x)=f′′(x)−f(x)=12[cosx+sinx+ex+cosx+sinx−ex]=12[2(cosx+sinx)]g(x)=cosx+sinx
⇒ Range of g(x) is [−√2,√2]
Thus, 3 integral points in range of g(x)