The correct options are
B f(1)+f(−1)=3011 D f(1)−f(−1)=2011Let
∫1−1tf(t)dt=a, and ∫1−1f(t)dt=b
⇒f(x)=x2+ax2+bx3
⇒f(t)=t2(1+a)+bt3
⇒tf(t)=t3(1+a)+bt4
Now
a=∫1−1tf(t)dt=∫1−1(t3(1+a)+bt4)dt
=2[bt55]10=2b5 ...(1)
(using property of integral of odd and even function).
Similarly b=∫1−1f(t)dt=∫1−1(t2(1+a)+bt3)dt
=2[(1+a)t33]10=23(1+a) ....(2)
Solving the equations
a=2b5 and b=2(1+a)3 simultaneously, we get
a=411 and b=1011
Hence, options A and C are incorrect.
Substituting x=1 in the original equation we get,
f(1)=1+a+b ..(3)
Similarly, substituting x=−1, we get
f(−1)=1+a−b ...(4)
Adding (3) and (4) we get ,
f(1)+f(−1)=2(1+a)=2×1511=3011
Similarly subtracting (4) from (3) we get,
f(1)−f(−1)=2b=2011
Hence, options B and D are correct.