Let f(x) is a real valued function defined by f(x)=x2+x2∫1−1tf(t)dt+x3∫1−1f(t)dt, then
f(1)+f(−1)=3011
f(1)−f(−1)=2011
f(x)=x2+ax2+bx3=(a+1)x2+bx3a=∫1−1tf(t)dt=∫1−1(a+1)t3+bt4dt=2b∫10t4dt∴a=2b5....(i)b=∫1−1f(t)dt=∫1−1(a+1)t2+bt3dt=(a+1)t33∣∣∣1−1⇒b=(a+1)23......(ii)
From (i)and (ii)
a=411 and b=1011
f(x)=15x211+10x311f(1)=2511f(−1)=511