Domain of f(x) i.e. x lies between −5≤x≤7
Domain of f(h(x)) i.e., h(x) lies −6≤h(x)≤1
Range of h(x)⇒f(h(x))
−5≤|kh(x)+5|≤7
−5≤kh(x)+5≤7⟶1
−7≤kh(x)+5≤5⟶2
Now, −6k≤kh(x)≤k
if k>0
−6k+5≤kh(x)+5≤k+5
Which can be compared to
−5≤kh(x)+5≤7
−6k+5=−5&k+5=7
106=k=53<k=2
If k is negative then −k≤kh(x)≤6k
−k+5≤kh(x)+5≤6k+5
comparing with equation 2
−k+5=−7,k=+12
6k+5=5 then, k=0
So, if k>0, then k=2,53
k<0, then k=0,k=+12 (which cant be true)