The correct option is A −1
(λ2+λ−2)x2+(λ+2)x<1(λ2+λ−2)x2+(λ+2)x−1<0
Let g(x)=(λ2+λ−2)x2+(λ+2)x−1
As g(x)<0, so the graph of g(x) always lies below the x− axis, therefore the required conditions are
(i) leading coefficient<0 and (ii) D<0
(i) leading coefficient<0⇒λ2+λ−2<0⇒(λ+2)(λ−1)<0
⇒λ∈(−2,1)⋯(1)
(ii) D<0⇒(λ+2)2−4(λ2+λ−2)(−1)<0⇒(λ+2)2+4(λ+2)(λ−1)<0⇒(λ+2)(λ+2+4λ−4)<0⇒(5λ−2)(λ+2)<0⇒λ∈(−2,25)⋯(2)
From equation (1) and (2),
⇒λ∈(−2,25)
Integral values in the interval is
−1,0
Sum of integer is −1.