Let f(x)= {x2,ifx≤x0ax+b,ifx>x0. If f is differentiable at x0, then
Let f(x)={x2,ifx≤x0ax+b,ifx>x0Lf′(x0)=limh⟶0f(x0−h)−f(x0)−h=limh⟶0(x0−h)2−x20−h=limh⟶0(x0−h+x0)(x0−h−x0)−h=limh⟶0−h(2x0−h)−h=limh⟶02x0−−h=2x0
Rf′(x0)=limh⟶0f(x0+h)−f(x0)−h=limh⟶0a(x0+h)+b−x20−h=limh⟶0ax0+ah+b−x20−h
Since f is differentiable atx0, Rf′(x0) must be finite, which is only possible when
ax0+ah+b−x20=0 when h→0
i.e ax0+b−x20=0→(1)
Now,
Rf′(x0)=limh⟶0ax0+ah+b−x20−h
Applying L'Hospital Rule,
Rf′(x0)=limh⟶00+a+0−01Rf′(x0)==a
Now, since f is differentiable at x0
Lf′(x0)=Rf′(x0)2x0=aor,a=2x0
Substituting a=2x0 in equation (1)
ax0+b−x20=02x20+b−x20=0b=−x20
Answer a=2x0,b=−x20