wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f(x)= {x2,ifxx0ax+b,ifx>x0. If f is differentiable at x0, then

A
a=x0,b=x0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
a=2x0,b=x20
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
a=2x0,b=x20
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
a=x0,b=x20
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B a=2x0,b=x20

Let f(x)={x2,ifxx0ax+b,ifx>x0Lf(x0)=limh0f(x0h)f(x0)h=limh0(x0h)2x20h=limh0(x0h+x0)(x0hx0)h=limh0h(2x0h)h=limh02x0h=2x0

Rf(x0)=limh0f(x0+h)f(x0)h=limh0a(x0+h)+bx20h=limh0ax0+ah+bx20h

Since f is differentiable atx0, Rf(x0) must be finite, which is only possible when

ax0+ah+bx20=0 when h0

i.e ax0+bx20=0(1)

Now,

Rf(x0)=limh0ax0+ah+bx20h

Applying L'Hospital Rule,

Rf(x0)=limh00+a+001Rf(x0)==a

Now, since f is differentiable at x0

Lf(x0)=Rf(x0)2x0=aor,a=2x0

Substituting a=2x0 in equation (1)

ax0+bx20=02x20+bx20=0b=x20

Answer a=2x0,b=x20


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Continuity in an Interval
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon