Given function is
f(x)=⎧⎪
⎪⎨⎪
⎪⎩(72)x−9x−8x+1√2−√1+cosx:x≠0klog2log3;x=0
f(x) is continuous at x=0
⇒limx→0 f(x)=f(0)
f(0)=limx→0(72)x−9x−8x+1√2−√1+cosx
=limx→0(9x−1)(8x−1)√2−√2cosx2 [as x→0]
=limx→09x−1x×8x−1x×x2√2−√2cosx2
=log9⋅log8⋅limx→02x√22sinx2
=6log3⋅log2⋅4√2
=24√2log2⋅log3
∴k=24√2