wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f(x)=⎪ ⎪⎪ ⎪limn(|x+1|n+x2|x|+x2n);6x<0{sinx};0x6 where {k} denotes the fractional part of k.
Then number of points at which f is not differentiable in (6,6) is equal to

Open in App
Solution

f(x)=⎪ ⎪⎪ ⎪limn(|x+1|n+x2|x|+x2n);6x<0{sinx};0x6

When x[6,1),
limn((1)n(x+1)n+x2x+x2n)=limn⎜ ⎜ ⎜ ⎜xnxn×(1)n(1+1x)n+1xn2xn1xn1⎟ ⎟ ⎟ ⎟=0

When x=1,
f(x)=limn(|x+1|n+x2|x|+x2n)=0+11+1=12

When x(1,0),
f(x)=limn((x+1)n+x2x+x2n)=x2x=x

When x[0,π2),
f(x)={sinx}=sinx
When x=π2,
f(x)={sinx}=0
When x(π2,π),
f(x)={sinx}=sinx
When x=π,
f(x)={sinx}=0
When x(π,6],
f(x)={sinx}=sinx[sinx]=sinx(1)=1+sinx

f(x)=⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪0;6x<112;x=1x;1<x<0sinx;0x<π20;x=π2sinx;π2<x<π0;x=π1+sinx;π<x6

f(x) is not continuous at x=1,π2,π
And at x=0, f(x) is continuous but not differentiable.

Hence, f is non-differentiable at 4 points {1,0,π2,π}

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Types of Discontinuity
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon