f(x)=⎧⎪
⎪⎨⎪
⎪⎩limn→∞(|x+1|n+x2|x|+x2n);−6≤x<0{sinx};0≤x≤6
When x∈[−6,−1),
limn→∞((−1)n(x+1)n+x2−x+x2n)=limn→∞⎛⎜
⎜
⎜
⎜⎝xnxn×(−1)n(1+1x)n+1xn−2xn−1xn−1⎞⎟
⎟
⎟
⎟⎠=0
When x=−1,
f(x)=limn→∞(|x+1|n+x2|x|+x2n)=0+11+1=12
When x∈(−1,0),
f(x)=limn→∞((x+1)n+x2−x+x2n)=x2−x=−x
When x∈[0,π2),
f(x)={sinx}=sinx
When x=π2,
f(x)={sinx}=0
When x∈(π2,π),
f(x)={sinx}=sinx
When x=π,
f(x)={sinx}=0
When x∈(π,6],
f(x)={sinx}=sinx−[sinx]=sinx−(−1)=1+sinx
f(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩0;−6≤x<−112;x=−1−x;−1<x<0sinx;0≤x<π20;x=π2sinx;π2<x<π0;x=π1+sinx;π<x≤6
f(x) is not continuous at x=−1,π2,π
And at x=0, f(x) is continuous but not differentiable.
Hence, f is non-differentiable at 4 points {−1,0,π2,π}