Let f(x)=⎧⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪⎩1−sin3x3cos2x:x<π2p:x=π2q(1−sinx)(x−2x)2:x>π2 If f(x) is continuous at x=π2,(p,q)=
A
(1,4)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(12,2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(12,4)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
(12,7)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C(12,4) f[(π2)−]=limh→01−sin3[(π2)−h]3cos2[(π2)−h] =limh→01−cos3h3sin2h=12 f[(π2)+]=limh→0q[1−sin{(π2)+h}][π−2{(π2)+h}]2 =limh→0q(1−cosh)4h2=q8 ∴p=12=q8⇒p=12,q=4