Let f(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩(1+|sinx|)a|sinx|,−π6<x<0b,x=0etan2xtan3x,0<x<π6
If f is continuous at x=0, then which of the following option(s) is correct
A
a=23
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
b=e23
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
a=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
b=e
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bb=e23 For f to be continuous at x=0, limx→0−f(x)=limx→0+f(x)=f(0)
Now, limx→0−f(x)=limx→0−(1+|sinx|)a|sinx|(1∞form) =limx→0−e(1−sinx−1)⋅a−sinx=ea limx→0+f(x)=limx→0+etan2xtan3x =elimx→0+tan2x2x⋅3xtan3x⋅23=e23 ∴ea=b=e23 ⇒a=23,b=e23