Let f(x)={−π,if−π<x≤0π,if0<x≤π
be a periodic function of period 2π. The coefficient of sin5x in the Fourier series expansion of f(x) in the interval [−π,π] is
45
Fourier series is f(x) =a02+∑ancosnx+∑bnsinnxwherebn=1π∫π−πf(x)sinnxdx
Hence to find coefficient of sin 5x, we need to calculate value of b5 i.e
b5=1π∫π−πf(x)sin5xdx=1π[∫0−π(−πsin5xdx)]+[∫π0πsin5xdx]
=(cos5x5)0−π−(cos5x5)π0=45