Let f(x)={x+1,ifx>0x−1,ifx<0 Prove that limx→0 f(x)does not exist.
limx→0+f(x)=limx→0+(x+1)
[x=0+h as x→0+,h→0+]
=limh→0+(0+h)+1=1
Also, limx→0−f(x)=limx→0−(x−1)
[x=0-h as x→0−,h→0+]
limx→0(0−h)−1=−1
⇒limx→0+f(x)≠limx→0−f(x)
Hence, limit does not exist.