Let f(x)={x+5,ifx>0x−4,ifx<0 Prove that limx→0 f(x) does not exist.
LHL=limx→0f(x)
=limx→0−(x−4) [as x→0−⇒x<0 slightly]
=(0-4)
=-4
RHL=limx→0+f(x)
=limx→0+(x+5) [as x→0+⇒x<0 slightly]
=(0+5)
=5
Clearly, limx→0−f(x)≠limx→0+f(x)
Hence limx→0f(x) does not exist.