f(x)=⎧⎪
⎪⎨⎪
⎪⎩xtan−1x+sec−11x,xϵ(−1,1)−{0}π2,x=0
l=f′(0+)=limh→0htan−1h+cos−1h−π2h
It is of the form 00, so applying L-Hopital's rule
l=f′(0+)=limh→0h1+h2+tan−1h−1√1−h21
⇒l=−1
m=f′(0−)=limh→0−htan−1(−h)+cos−1(−h)−π2(−h)
It is of the form 00, so applying L-Hopital's rule
m=limh→0htan−1(h)+π−cos−1(h)−π2(−h)
m=f′(0−)=limh→0h1+h2+tan−1h+1√1−h2−1
⇒m=−1
Hence, l2+m2=2