The correct option is
A [−2a,a3]At
x=0,L.H.L=limx→0−f(x)=limx→0−xeax=0and R.H.L=limx→0+f(x)=limx→0+(x+ax2−x3)=0
Therefore, L.H.L=R.H.L=0=f(0)
So, f(x) is continuous at x=0.
Also, f′(x)={1.eax+axeax,x<01+2ax−3x2,x>0
and Lf′(0)=limx→0−f(x)−f(0)x−0 =limx→0−xeax−0x=limx→0−eax=e0=1
and Rf′(0)=limx→0+f(x)−f(0)x+0 =limx→0+x+ax2−x3−0x =limx→0+1+ax−x2=1
Therefore, Lf′(0)=Rf′(0)=1⇒f′(0)=1
Hence, f′(x)=⎧⎨⎩(ax+1)eax,x<01,x=01+2ax−3x2,x>0
Now, we can say without solving that, f′(x)bis continuous at x=0 and hence on R.
We have,
f′(x)={aeax+a(ax+1)eax,x<02a−6x,x>0
and Lf′′(0)=limx→0−f′(x)−f′(0)x−0=limx→0−(ax−1)eax−1x =limx→0−[aeax+eax−1x]
=limx→0−aeax+a.limx→0−eax−1ax =ae0+a(1)=2a
and Rf′′(0)=limx→0+f′(x)−f′(0)x+0 =limx→0+(1+2ax−3x2)−1x =limx→0+2ax−3x2x=limx→0+2a−3x=2a
Therefore Lf′′(0)=Rf′′(0)=2a
Hence, f′′(x)=⎧⎨⎩a(ax+2)eax,x<02a,x=02a−6x,x>0
Now, for x<0,f′′(x)>0, if ax+2>0
⇒ for x<0,f′′(x)>0,, if x>−2a
⇒f′′(x)>0 if −2a<x<0
And for x>0,f′′(x)>0, if 2a−6x>0
⇒ for x>0,f′′(x)>0, if x<a3
f(x) increases on [−2a,0] and on [0,a3]
Hence, f(x) increases on [−2a,a3].