f(x)=[tan2x]
f(0)=[tan20]=[0]=0
limx→0+f(x)=limx→0+[tan2x]=limh→0[tan2(0+h)]
=limh→0[tan2h]=0
limx→0−f(x)=limx→0−[tan2x]=limh→0[tan2(0−h)]
=limh→0[tan2h]=0
∴f(x) is continuous at x=0
Now,
f(π4)=[tan2π4]=[1]=1
limx→π4+f(x)=limx→π4+[tan2x]=limh→0[tan2(π4+h)]
=[(1+)2]=[1+]=1 (∵tan(π4+h)=1+tanh1−tanh>1)
limx→π4−f(x)=limx→π4−[tan2x]=limh→0[tan2(π4−h)]
=[(1−)2]=[1−]=0 (∵tan(π4−h)=1−tanh1+tanh<1)
⇒ limit does not exist at x=π4
∴f(x) is discontinuous at x=π4