Let f(x)=max(x+|x|,x−[x]) where [x] = the greatest integer in x≤x. Then ∫2−2f(x)dx is equal to
None of these
∫2−2f(x)dx=∫0−2(x−[x])dx+∫20(x+|x|)dx=∫0−2xdx−∫0−2[x]dx+∫202xdx=∣∣x22∣∣0−2−[∫−1−2[x]dx+∫0−1[x]dx]+∣∣x2∣∣20=0−2−[∫−1−2−2dx+∫0−1−1dx]+4=2+|2x|−1−2+|x|0−1=2+[−2+4]+[0+1]=5