The correct options are
A Range of f is [−12,12]
B Range of f∘g is [−12,12]
C limx→0f(x)g(x)=π6
For option (1):
f(x)=sin(π6sin(π2sinx))
Let π2sinx=θ⇒θ∈[−π2,π2]
Then f(x)=sin(π6sinθ)
Let π6sinθ=γ⇒γ∈[−π6,π6]
⇒f(x)=sinγ
Therefore, Range of f is [−12,12]
For option (2):
f(x)=sin(π6sin(π2sinx)),
g(x)=π2sinx
⇒f∘g (x)=sin(π6sin(π2sin(π2sinx)))
From the above procedure, we can say that the range of f∘g is [−12,12]
For option (3):
limx→0f(x)g(x)=limx→0sin(π6sin(π2sinx))π2sinx
⇒limx→0sin(π6sin(π2sinx))π6sin(π2sinx)×π6sin(π2sinx)π2sinx=π6
For option (4):
g∘f (x)=π2sin(sin(π6sin(π2sinx)))=1⇒sin(sin(π6sin(π2sinx)))=2π=23.14>12
which is beyond the range of the function.
So, option (4) is not correct.