The correct option is C limx→0f(x)g(x)=π6
f(x)=sin(π6sin(π2sinx))
We know that
⇒π2sinx∈[−π2,π2]⇒π6sin(π2sinx)∈[−π6,π6]⇒sin(π6sin(π2sinx))∈[−12,12]
Therefore, the range of f is [−12,12]
f(x)=sin(π6sin(π2sinx))g(x)=π2sinx⇒f∘g(x)=sin(π6sin(π2sin(π2sinx)))
Similarly, we can solve
Thereore, the range of f∘g is [−12,12]
limx→0f(x)g(x)=limx→0sin(π6sin(π2sinx))π2sinx=limx→0sin(π6sin(π2sinx))π6sin(π2sinx)×π6sin(π2sinx)π2sinx=π6
g∘f(x)=1⇒π2sin(sin(π6sin(π2sinx)))=1⇒sin(π6sin(π2sinx))=sin−12π⇒sin(π6sin(π2sinx))>π6(∵sin−123.14>sin−112)⇒f(x)>12 (∵π6=0.523)
Which is beyond the range of the function f(x), so its not possible.