The correct options are
A Range of f is [−12, 12]
B Range of fog is [−12, 12]
C limx→0 f(x)g(x)=π6
f(x)=sin[π6sin (π2sin x), xϵ R]=sin(π6sin θ) θ ϵ[−π2, π2]where θ=π2 sin x=sin α, α ϵ[−π6,π6], where α=π6 sin θ∴ f(x) ϵ[−12, 12]
Hence, range of f(x) ϵ[−12, 12]
So, Option (b) is correct.
(b) f{g(x)}=f, t ϵ[−π2, π2] ⇒ f(t)ϵ[−12, 12]
∴ Option (b) is correct.
c. limx→0f(x)g(x)=limx→0sin[π6sin(π2sin x)]π2(sin x)limx→0sin[π6sin(π2sin x)]π6sin (π2sin x).π6sin(π2sin x)(π2sin x)=1×π6×1=π6
∴ Option (c) is correct.
⇒ π2 sin {f(x)}=1
⇒sin{f(x)}=2π . . . (i)
But f(x) ϵ[−12, 12]⊂[−π6, π6]
∴ sin{f(x)} ϵ [−12, 12] . . . (ii)
⇒ sin{f(x)}≠2π, [From Eqs. (i) and (ii)]
i.e. No solution
∴ Option (d) is not correct.