Let f(x)=sinx,g(x)=[x+1] and g(f(x))=h(x), where [.] is the greatest integer function. The h′(π2) is
h(x)=g(f(x))=[f(x)+1]=[sin(x)+1]⋃k⟶0h(π2+k)=⋃k⟶01+⋃k⟶0[sin(π2+k)]=1+0=1⋃k⟶0h(π2−k)=⋃k⟶01+⋃k⟶0[sin(π2−k)]=1+0=1h(π2)=1+[sin(π2)]=1+1=2
where [.] represents greatest integer function
∵ left hand limit = Right hand lmit
≠ value of fnction at that point
∴h(x) is not continous at x=π2
Hereh(x) s not differentiable at x=π2
⇒h′(x) doe not exst
Answer A