The correct option is D f(xy)≤f(x)⋅f(y)
Given: f(x)=√1+x2
Define f(xy)andf(y)f(xy)=√1+x2y2…(i)
andf(y)=√1+y2\
Now f(x)⋅f(y)=√1+x2√1+y2f(x)⋅f(y)=√1+x2+y2+x2y2…(ii)
(∵√a⋅√b=√ab)
Since for any value ofx,yϵR1+x2y2≤1+x2+y2+x2y2
⇒√1+x2y2≤√1+x2+y2+x2y2
∴ by using (i) and (ii) we get
f(xy)≤f(x)⋅f(y)
Hence, the correct option is (C)