Let f(x)=√x and g(x)=x be two functions defined over the set of non-negative real numbers. Find:
(i) (f+g)(x)
(ii) (f−g)(x)
(iii) (fg)(x)
(iv) fg(x)
Here f:[0,∞)→R:f(x)=√x and g:[0,∞)→R:g(x)=x
∴dom (f)=[0,∞) and dom (g)=[0,∞)
So, dom (f)∩dom (g)=[0,∞)∩[0,∞)=[0,∞)
(i) (f+g):[0,∞)→R is given by
(f+g)(x)=f(x)+g(x)=(√x+x)
(ii) (f−g):[0,∞)→R is given by
(f−g)(x)=f(x)−g(x)=(√x−x)
(iii) (fg):[0,∞)→R is given by
(fg)(x)=f(x).g(x)=(√x×x)=x32
(iv) {x:g(x)=0}={0}
∴dom(fg)=dom (f)∩dom (g)−{x:g(x)=0}
=[0,∞)∩[0,∞)−{0}=(0,∞)
So, fg:(0,∞)→R is given by
(fg)(x)=f(x)g(x)=√xx=1√x, x≠0.