Let f(x)=tanx−tan3x+tan5x−tan7x+...+∞, xϵ(0,π4), then
limx→0f(x)x=1
∫π60f(x)dx=18
f(x) is an odd function
Given series is a geometric progression with common ratio tan2x
So, f(x)=tanx1+tan2x=sin2x2
→f′(x)=cos2x
⇒f′(π12)=√32
→limx→0f(x)x=sin2x2x=1
→∫π60f(x)dx=∫π60sin2x2dx=[−cos2x4]π60=18
Since, f(−x)=−f(x), so, f(x) is an odd function.