Let f(x)=sin x ∫x0cos t dt+2∫x0t dt+cos2 x−x2. Then area bounded by x f(x) and ordinate x = 0 and x = 5 with x-axis is
252
f(x)=sin x∫x0cos t dt+2∫x0t dt−x2+cos2 x
=sin x(sin t)x0+2(t22)x0−x2+cos2 x
=sin2 x+x2−x2+cos2 x=1
A=∫50x f(x) dx=∫50(x) (1) dx=(x22)50=252