let f(x)=(x+1)2+1x then the value of ∫1−2f(x)(−x)dx
We have
f(x)=(x+1)2+1x
Then the value of
∫1−2f(x)(−x)dx
Solve it:-
∫1−2f(x)(−x)dx
=∫1−2[(x+1)2+1x](−x)dx
=∫1−2[(−x)(x+1)2+−xx]dx
=∫1−2[(−x)(x2+1+2x)−1]dx
=∫1−2[(−x3−x−2x2)−1]dx
=∫1−2[−x3−x−2x2−1]dx
=∫1−2−x3dx−∫1−2xdx−∫1−22x2dx−∫1−21dx
=[−x44]−21−[x22]−21−2[x33]−21−[x]−21
=−[14−(−2)44]−[12−(−2)22]−2[13−(−2)33]−[1−(−2)]
=154+32−2×93−3
=154+32−6−3
=154+32−9
=15+6−364
=21−364
=−154
Hence, this is the answer.