Given f(x)=(x+1)(x+2)(x+3)(x+4)+5 for x∈[−6,6]
Take g(x)=(x+1)(x+2)(x+3)(x+4)
Rearranged as g(x)=(x+1)(x+4)(x+2)(x+3)
=(x2+5x+4)(x2+5x+6)
=(x2+5x+4)(x2+5x+4+2)
=t(t+2) where t=x2+5x+4
=t2+2t+1−1
=(t+1)2−1
=(x2+5x+4+1)2−1 where t=x2+5x+4
=(x2+5x+5)2−1
Let g(x)=x2+5x+5
⇒f(x)=(x2+5x+5)2−1+5=(x2+5x+5)2+4
Range of x2+5x+5 for x∈[−6,6]
Discriminant=52−4×1×5=25−20=5>0
∴ there exists two roots
Let y=x2+5x+5
⇒y′=2x+5
⇒y′=0⇒2x+5=0
⇒2x=−5
∴x=−52=−2.5∈[−6,6]
Substitute x=−52 in x2+5x+5
we get 254−252+5=25−50+204=−54
∴ minimum value =−54
Put x=−6 in x2+5x+5
⇒36−30+5=11
Put x=6 in x2+5x+5
⇒36+30+5=71
∴ Range of x2+5x+5 is [−54,71]
Range of (x2+5x+5)2∈[0,712] since t2≥0
∴ Range of (x2+5x+5)2∈[0,5041]
Range of (x2+5x+5)2+4∈[0,5041]+4=[0,5045]
∴ range of f(x)=[0,5045]
where a=4,b=5045
∴a+b=4+5045=5049