wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f(x)=(x+1)(x+2)(x+3)(x+4)+5 where x[6,6]. If the range of the function is [a,b] where a,bN then find the value of (a+b).

Open in App
Solution

Given f(x)=(x+1)(x+2)(x+3)(x+4)+5 for x[6,6]

Take g(x)=(x+1)(x+2)(x+3)(x+4)

Rearranged as g(x)=(x+1)(x+4)(x+2)(x+3)

=(x2+5x+4)(x2+5x+6)

=(x2+5x+4)(x2+5x+4+2)

=t(t+2) where t=x2+5x+4

=t2+2t+11

=(t+1)21

=(x2+5x+4+1)21 where t=x2+5x+4

=(x2+5x+5)21

Let g(x)=x2+5x+5

f(x)=(x2+5x+5)21+5=(x2+5x+5)2+4

Range of x2+5x+5 for x[6,6]

Discriminant=524×1×5=2520=5>0

there exists two roots

Let y=x2+5x+5

y=2x+5

y=02x+5=0

2x=5

x=52=2.5[6,6]

Substitute x=52 in x2+5x+5

we get 254252+5=2550+204=54

minimum value =54

Put x=6 in x2+5x+5

3630+5=11

Put x=6 in x2+5x+5

36+30+5=71

Range of x2+5x+5 is [54,71]

Range of (x2+5x+5)2[0,712] since t20

Range of (x2+5x+5)2[0,5041]

Range of (x2+5x+5)2+4[0,5041]+4=[0,5045]

range of f(x)=[0,5045]

where a=4,b=5045

a+b=4+5045=5049



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition of Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon