f(x)=x2−1
When x∈(−1,0)∪(0,1) , we have:
a) |x|∈(0,1)
⇒0<|x|<1
⇒0<|x|2<1
⇒−1<|x|2−1<0
⇒−1<f(|x|)<0
⇒−1<|f(|x|)|<1
[|f(|x|)|]=0
b) −1<x<0 and 0<x<1
⇒0<x2<1 [ squaring eliminating negative values]
⇒−1<x2−1<0
⇒−1<f(x)<0
[f(x)=x2−1]
⇒[f(x)]=−1
⇒|[f(x)]|=1
Thus we get g(x)=[|f(|x|)|]+|[f(x)]|
=0+1
=1 when x∈(−1,0)∪(0,1)
Also, given g(x)=1 otherwise
Thus, g(x)=1 throughout x∈
Now, [|g(x)|]=[|1|]=[1]=1∀x∈
Then ln([|g(x)|])=ln(1)=0
Range of ln ([|g(x)|])={0}