Let f(x)=|x2−4x+3| be a function defined on x∈[0,4] and α,β,γ are the abscissas of the critical points of f(x). If m and M are the local and absolute maximum values of f(x) respectively, then the value of α2+β2+γ2+m2+M2 is
Open in App
Solution
f(x)=|x2−4x+3|,x∈[0,4]
→ From the graph, critical points are (1,0),(2,1),(3,0) α=1,β=2,γ=3
→ Local maximum occurs at x=2 ∴ Local maximum value, m=f(2)=1