Given: f(x)=x2 and g(x)=2x+1
Step 1:Addition of two functions
(f+g)(x)=f(x)+g(x) =x2+(2x+1) =x2+2x+1
Step 2:Subtraction of two functions
(f−g)(x)=f(x)−g(x)
=x2−(2x+1)
=x2−2x−1
Step 3: Multiplication of two functions
(fg)(x)=f(x).g(x)
=x2(2x+1)
=2x3+x2
Step 4:Division of two functions
fg(x)=f(x)g(x)=x22x+1
As denominator cannot be zero ∴fg(x)=x22x+1,x≠−12