Let f(x)=x2 and g(x)=sinx for all x∈R. Then the set of all x satifying (f∘g∘g∘f)(x)=(g∘g∘f)(x), where (f∘g)(x)=f(g(x)), is
±√nπ,n∈0,1,2,...
Given that f(x)=x2 and g(x)=sinx,∀x∈R
Then (g∘f)(x)=sinx2
⇒(g∘g∘f)(x)=sin(sinx2)
As given that (f∘g∘g∘f)(x)=(g∘g∘f)(x)
⇒sin2(sinx2)=sin(sinx2)⇒sin(sinx2)=0,1
⇒sinx2=nπ or (4n+1)π2 where n∈Z
⇒sinx2=0∵sinx2∈[−1,1]⇒x2=nπ
⇒x=±√nπ where n∈W