The correct option is D a=1,b=4
F(x)=limn→∞f(x)+x2ng(x)1+x2n⇒F(x)=limn→∞f(x)+(x2)ng(x)1+(x2)n⇒F(x)=⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩f(x), 0≤x2<1f(x)+g(x)2, x2=1g(x), x2>1⇒F(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩g(x), x<−1f(−1)+g(−1)2, x=−1f(x), −1<x<1f(1)+g(1)2, x=1g(x), x>1
If F(x) is continuous ∀x∈R, then
F(x) must be continuous at x=±1
For continuity at x=−1
f(−1)=g(−1)=f(−1)+g(−1)2⇒4−a=b−1⇒a+b=5⋯(1)
For continuity at x=1
f(1)=g(1)=f(1)+g(1)2⇒1+a+3=1+b⇒a−b=−3⋯(2)
Using equations (1) and (2), we get
a=1, b=4