F(x)=limn→∞f(x)+xng(x)1+xn
⇒F(x)=⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩f(x) ;0≤x<1f(1)+g(1)2 ;x=1g(x) ;x>1
⇒F(x)=⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩x2+px+3 ;0≤x<1p+q+52 ;x=1x+q ;x>1
Differentiating w.r.t x,
⇒F′(x)={2x+p ;0<x<11 ;x>1
As the function is derivable, L.H.D = R.H.D,
2+p=1⇒p=−1
∵F(x) is derivable, therefore continuous too.
Checking continuity at x=1,
1+p+3=1+q⇒p+3=q⇒−1+3=q⇒q=2
∴p2+q2=5