Let f(x)=x2+xg'(1)+g''(2) and g(x)=x2+xf'(2)+f''(3), then:
f'(1)=4+f'(2)
g'(2)=g'(1)+4
g''(2)+f'(3)=8
None of these
Explanation for the correct answer
Given that: f(x)=x2+xg'(1)+g''(2) and g(x)=x2+xf'(2)+f''(3)
f(x)=x2+xg'(1)+g''(2)f'(x)=2x+g'(1)....(1)
g(x)=x2+xf'(2)+f''(3)g'(x)=2x+f'(2).....(2)
Putting x=1 in equations (1) and (2):
f'(1)=2+g'(1)g'(1)=2+f'(2)
Putting x=2 in equation (1);
f'(2)=4+g'(1)g'(2)=4+f'(2)
Then,
g'(2)=4+4+g'(1)⇒g'(2)=8+g'(1)
Also,
f''(x)=2,g''(x)=2f''(3)=2,g''(3)=2∴g''(x)+f''(x)=2+2=4
Hence, the correct answer is Option (D).
Use the factor theorem to determine whether g(x) is a factor of f(x)
f(x)=22x2+5x+2;g(x)=x+2