The correct option is C 6
f(x)=x3+px2+qx+12
Let α,−α,β be the roots of the equation.
Then α+(−α)+β=−p
−α2+(−αβ)+βα=q
−α2β=−12
⇒β=−p ⋯(1)
−α2=q ⋯(2)
−α2β=−12 ⋯(3)
From (1),(2) and (3), we get
pq=12
We can verify p,q both cannot be positive by Descartes' rule.
∴ The possible values of (p,q) are
(−1,−12),(−2,−6),(−3,−4),
(−12,−1),(−6,−2),(−4,−3)