Let f(x)=x3−x2+x+1 and
g(x)={max(f(t))for0≤t≤xfor0≤x≤13−x+x2for1<x≤2 then
Given:\\
g(x)=max(f(t))for0≤t≤xfor0≤x≤1
and f′(x)=3x2−2x+1>0
⇒ f(x) is always increasing, ∴g(x)=x3−x2+x+1for0≤x≤1
Since the function changes definition at x=1, we should check continuity at x=1
limx→1−g(x)=13−12+1+1=2
also, g(x)=3−x+x2for1<x≤2
limx→1+g(x)=3−1+12=3
limx→1−≠limx→1+
Thererfore, g(x) is not continous and hence not differentiable at x=1
Correct answer is C