The correct option is D (−12,12)
x4+ax3+bx2+ax+1=0⋯(1)x4+ax3−x2+ax+1=0
Dividing the equation by x2,
(x2+1x2)+a(x+1x)−1=0
Let x+1x=t,t∈(−∞,−2]∪[2,∞)
Now,
(x+1x)2=t2⇒x2+1x2=t2−2
Now,
t2−2+at−1=0⇒t2+at−3=0⋯(2)
let the roots of equation 2 be t1,t2(t1<t2)
For every t≥2, there exist 2 positive values of x.
For every t≤−2, there exist 2 negative values of x.
Equation (1) will have no real roots iff equation (2) will have
(A) Non real roots or
(B) t1,t2∈(−2,2)
Case(A) : Non real roots,
D<0⇒a2+12<0⇒a∈ϕ⋯(3)
Case (B): t1,t2∈(−2,2)
−2<t1,t2<2(i) D≥0⇒a2+12≥0⇒a∈R(ii) f(−2)>0⇒1−2a>0⇒a<12(iii) f(2)>0⇒2a+1>0⇒a>−12(iv) −2<−B2A<2⇒−2<−a2<2⇒4>a>−4∴a∈(−12,12)⋯(4)
From equation (3) and (4),
a∈(−12,12)