The correct option is B f′ is decreasing in (−π2,0) and increasing in (0,π2)
f(x)=xcos−1(sin(−|x|))
⇒f(x)=xcos−1(−sin|x|)
⇒f(x)=x[π−cos−1(sin|x|)]
⇒f(x)=x[π−(π2−sin−1(sin|x|))]
⇒f(x)=x(π2+|x|)
⇒f(x)=⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩x(π2+x),x≥0x(π2−x),x<0
⇒f′(x)=⎧⎪⎨⎪⎩π2+2x,x≥0π2−2x,x<0
⇒f′′(x)={2,x≥0−2,x<0
Therefore, f′(x) is decreasing in (−π2,0) and increasing in (0,π2).