wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f(x), (x1) be a differentiable function satisfying f(x)=(lnx)2e1f(t)tdt. If the area bounded by the tangent line of y=f(x) at point (e,f(e)), the curve y=f(x) and the line x=1 is A. Then the value of [A] is ,
where [.] denotes the greatest integer function.

Open in App
Solution

Let
C=e1f(t)tdt
Then
f(x)=(lnx)2C
C=e1(lnt)2Ctdt
=e1(lnt)2tdtCe11tdt
=10y2dyC[lnt]e1
C=13C
C=16
f(x)=(lnx)216
f(x)=2lnxx
Slope of tangent at point (e,f(e)) is,
m=2lnee=2e
x=ey=(lne)216=56
Therefore, equation of tangent is,
y56=2e(xe)
y=2xe76


A=e1[((lnx)216)(2xe76)]dx
A=e1((lnx)22xe+1)dx
A=e1(lnx)2 dx[e21e]+e1A=[x(lnx)2]e1e12lnx dx+1e1A=e+1e12e1lnx dxA=e+1e12[x(lnx1)]e1
A=e+1e3

Therefore,
[A]=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Area under the Curve
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon