The correct option is D limx→1+f(x)=1
[x+1]=0
⇒0≤x+1<1
⇒−1≤x<0
∴ Domain of f is R−[−1,0)
limx→0+f(x)
=limh→0f(0+h)
=limh→0[0+h]sin(π[0+h]+1)
=limh→0 (0⋅sinπ)=0
For x∈[0,1),[x+1]=1
∴f(x)=0⋅sinπ=0 for all x∈[0,1)
∴f is continuous on [0,1)
limx→1+f(x)
=limh→0f(1+h)
=limh→0[1+h]sin(π[1+h]+1)
=1×sinπ2
=1