f(x)=x√4ax−x2
Differntiate w.r.t 'x'
f1(x)=x(4x−2a)α√4ax−x2+√4ax−x2
=αx(2a−x)α√4ax−x2+√4ax−x2
=x(2a−x)√4ax−x2+√4ax−x2
Equate f1(x)=0
0=(2a−x)x√4ax−x2+√4ax−x2
−√4ax−x2=(2a−x)x√4ax−x2
4ax−x2=(2a−x)x
So the factor is : x√x(4a−x)=0
x=0or√x(4a−x)=0
4ax−x2=0
x2=4axx=4a
So the function is increasing in the range (0,4a)
Therefore the decreasing range would be
(−∞,0)∪(4a,∞)
Hence the given option (5a,∞)and(−∞,0)∪(4a,∞) fall in
this range
Hence option A and B are correct answers